SK hynix this week reported its financial results for the second quarter, as well as offering a glimpse at its plans for the coming quarters. Notably among the company's plans for the year is the release of a SK hynix-branded 60 TB SSD, which will mark the firm's entry into the ultra-premium enterprise SSD league.
"SK hynix plans to expand sales of high-capacity eSSD and lead the market in the second half with 60TB products, expecting eSSD sales to be more than quadrupled compared to last year," a statement by SK hynix reads.
Currently there are only two standard form-factor 61.44 TB SSDs on the market: the Solidigm D5-P5336 (U.2/15mm and E1.L), and the Samsung BM1743 (U.2/15mm and E3.S). Both are built from a proprietary controller (Solidigm's controller still carries an Intel logotype) with a PCIe 4.0 x4 interface and use QLC NAND for storage.
SK hynix's brief mention of the drive means that tere aren't any formal specifications or capabilities to discuss just yet. But it is reasonable to assume that the company will use its own QLC memory for their ultra-high-capacity drives. What's more intriguing are which controller the company plans to use and how it is going to position its 60 TB-class SSD.
Internally, SK hynix has access to multiple controller teams, both of which have the expertise to develop an enterprise-grade controller suitable for a 60 TB drive. SK hynix technically owns Solidigm, the former Intel SSD and NAND unit, giving SK hynix the option of using Solidigm's controller, or even reselling a rebadged D5-P5336 outright. Alternatively, SK hynix has their own (original) internal SSD team, who is responsible for building their well-received Aries SSD controller, among other works.
Ultra-high-capacity SSDs for performance demanding read-intensive storage applications, such as AI inference on the edge or content delivery networks, is a promising premium market. So SK hynix is finding itself highly incentivized to enter it with a compelling offering.
SSDsSK hynix to Enter 60 TB SSD Club Next Quarter SK hynix this week reported its financial results for the second quarter, as well as offering a glimpse at its plans for the coming quarters. Notably among the company's plans for the year is the release of a SK hynix-branded 60 TB SSD, which will mark the firm's entry into the ultra-premium enterprise SSD league. "SK hynix plans to expand sales of high-capacity eSSD and lead the market in the second half with 60TB products, expecting eSSD sales to be more than quadrupled compared to last year," a statement by SK hynix reads. Currently there are only two standard form-factor 61.44 TB SSDs on the market: the Solidigm D5-P5336 (U.2/15mm and E1.L), and the Samsung BM1743 (U.2/15mm and E3.S). Both are built from a proprietary controller (Solidigm's controller still carries an Intel logotype) with a PCIe 4.0 x4 interface and use QLC NAND for storage. SK hynix's brief mention of the drive means that tere aren't any formal specifications or capabilities to discuss just yet. But it is reasonable to assume that the company will use its own QLC memory for their ultra-high-capacity drives. What's more intriguing are which controller the company plans to use and how it is going to position its 60 TB-class SSD. Internally, SK hynix has access to multiple controller teams, both of which have the expertise to develop an enterprise-grade controller suitable for a 60 TB drive. SK hynix technically owns Solidigm, the former Intel SSD and NAND unit, giving SK hynix the option of using Solidigm's controller, or even reselling a rebadged D5-P5336 outright. Alternatively, SK hynix has their own (original) internal SSD team, who is responsible for building their well-received Aries SSD controller, among other works. Ultra-high-capacity SSDs for performance demanding read-intensive storage applications, such as AI inference on the edge or content delivery networks, is a promising premium market. So SK hynix is finding itself highly incentivized to enter it with a compelling offering. SSDs
The Corsair RM750e ATX 3.1 Review: Simple And Effective As mainstream power supplies continue to make their subtle shift to the ATX 3.1 standard, the pace of change is picking up. Already most vendors offer at least one ATX 3.1 unit in their lineups, and thanks to the relatively small set of changes that come with the revised standard, PSU vendors have largely been able to tweak their existing ATX 3.0 designs, allowing for them to quickly roll-out updated power supplies. This means that the inflection point for ATX 3.1 as a whole is quickly approaching, as more and more designs get their update and make their way out to retail shelves. Today we're looking at our first ATX 3.1-compliant PSU from Corsair, one of the industry's most prolific (and highest profile) power supply vendors. Their revised RMe line of power supplies are aimed at the mainstream gaming market, which is perhaps not too surprising given how important ATX 3.1 support and safety are to video cards. The RM750e model we're looking at today is the smallest capacity for the lineup, which stretches from 750 Watts up to a hefty 1200 Watts. Overall, the RM750e is built to meet the demands of contemporary gaming systems, and boasts a great balance between features, performance, and cost. It is an 80Plus Gold certified unit with modular cables and PCIe 5.1/ATX 3.1 certified, offering a single 600W 12V-2x6 connector. We will explore its specifications, construction, and performance to determine its standing in today’s market. Cases/Cooling/PSUs
G.Skill on Tuesday introduced its ultra-low-latency DDR5-6400 memory modules that feature a CAS latency of 30 clocks, which appears to be the industry's most aggressive timings yet for DDR5-6400 sticks. The modules will be available for both AMD and Intel CPU-based systems.
With every new generation of DDR memory comes an increase in data transfer rates and an extension of relative latencies. While for the vast majority of applications, the increased bandwidth offsets the performance impact of higher timings, there are applications that favor low latencies. However, shrinking latencies is sometimes harder than increasing data transfer rates, which is why low-latency modules are rare.
Nonetheless, G.Skill has apparently managed to cherry-pick enough DDR5 memory chips and build appropriate printed circuit boards to produce DDR5-6400 modules with CL30 timings, which are substantially lower than the CL46 timings recommended by JEDEC for this speed bin. This means that while JEDEC-standard modules have an absolute latency of 14.375 ns, G.Skill's modules can boast a latency of just 9.375 ns – an approximately 35% decrease.
G.Skill's DDR5-6400 CL30 39-39-102 modules have a capacity of 16 GB and will be available in 32 GB dual-channel kits, though the company does not disclose voltages, which are likely considerably higher than those standardized by JEDEC.
The company plans to make its DDR5-6400 modules available both for AMD systems with EXPO profiles (Trident Z5 Neo RGB and Trident Z5 Royal Neo) and for Intel-powered PCs with XMP 3.0 profiles (Trident Z5 RGB and Trident Z5 Royal). For AMD AM5 systems that have a practical limitation of 6000 MT/s – 6400 MT/s for DDR5 memory (as this is roughly as fast as AMD's Infinity Fabric can operate at with a 1:1 ratio), the new modules will be particularly beneficial for AMD's Ryzen 7000 and Ryzen 9000-series processors.
G.Skill notes that since its modules are non-standard, they will not work with all systems but will operate on high-end motherboards with properly cooled CPUs.
The new ultra-low-latency memory kits will be available worldwide from G.Skill's partners starting in late August 2024. The company did not disclose the pricing of these modules, but since we are talking about premium products that boast unique specifications, they are likely to be priced accordingly.
MemoryMicrochip recently announced the availability of their second PCIe Gen 5 enterprise SSD controller - the Flashtec 5016. Like the 4016, this is also a 16-channel controller, but there are some key updates:
Microchip's enterprise SSD controllers provide a high level of flexibility to SSD vendors by providing them with significant horsepower and accelerators. The 5016 includes Cortex-A53 cores for SSD vendors to run custom applications relevant to SSD management. However, compared to the Gen4 controllers, there are two additional cores in the CPU cluster. The DRAM subsystem includes ECC support (both out-of-band and inline, as desired by the SSD vendor).
At FMS 2024, the company demonstrated an application of the neural network engines embedded in the Gen5 controllers. Controllers usually employ a 'read-retry' operation with altered read-out voltages for flash reads that do not complete successfully. Microchip implemented a machine learning approach to determine the read-out voltage based on the health history of the NAND block using the NN engines in the controller. This approach delivers tangible benefits for read latency and power consumption (thanks to a smaller number of errors on the first read).
The 4016 and 5016 come with a single-chip root of trust implementation for hardware security. A secure boot process with dual-signature authentication ensures that the controller firmware is not maliciously altered in the field. The company also brought out the advantages of their controller's implementation of SR-IOV, flexible data placement, and zoned namespaces along with their 'credit engine' scheme for multi-tenant cloud workloads. These aspects were also brought out in other demonstrations.
Microchip's press release included quotes from the usual NAND vendors - Solidigm, Kioxia, and Micron. On the customer front, Longsys has been using Flashtec controllers in their enterprise offerings along with YMTC NAND. It is likely that this collaboration will continue further using the new 5016 controller.
Storage
0 Comments